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Abstract—A direct nitration of the upper rim of thiacalix[4]arenes is not possible due to the undesirable oxidation of the sulphur
atoms during the nitration step leading to very complicated reaction mixtures. On the other hand, thiacalix[4]arene derivatives can
be at first transformed intentionally to the highest oxidation state—sulfones, and subsequently ipso-nitrated using 100% HNO3 in
CF3COOH. This procedure gives smoothly mono- or dinitro-derivatives in acceptable yields which opens the way for further
derivatisation of the upper rim of thiacalixarenes. © 2002 Elsevier Science Ltd. All rights reserved.

Thiacalix[4]arene 1,1 bearing four sulphur atoms
instead of the usual CH2 bridging groups, represents a
new member of the calix[n]arene family.2,3 As demon-
strated very recently, thiacalixarene derivatives exhibit
many novel properties and uncommon chemical
behaviour when compared with the chemistry of ‘classi-
cal’ calixarenes. The oxidations of sulphur bridges to
the corresponding sulfoxide4 3a or sulfone5 3b deriva-
tives—reactions unknown in the chemistry of ‘classical’
calixarenes have been described. Similarly, the ‘amina-
tion’ of the thiacalixarene lower rim6 and the formation
of intramolecular lactone derivatives7 should also be
mentioned. These novel features, together with substan-
tially different conformational preferences8 and unusual
complexation abilities,9 make thiacalixarenes good can-
didates for the role of building blocks and molecular
scaffolds.

While the chemistry of classical calixarenes is very well
established and developed,2 the wider application of
thiacalixarenes in supramolecular chemistry requires
new knowledge dealing with the general and/or regiose-

lective derivatisation of these compounds. During our
on-going research on the electrophilic substitution of
thiacalix[4]arene, we came to the conclusion that the
chemical behaviour of this new system is very different
from that of calix[4]arene. Thus, starting from
25,26,27,28-tetraalkoxythiacalix[4]arenes, all our
attempts at the direct halogenation, nitration, Friedel–
Crafts acylation or formylation of the upper rim, using
procedures well-known from classical calixarene chem-
istry, have failed. Only very recently it was found that
2 reacts smoothly with diazonium salts to form tetra-
substituted azo derivatives that can be subsequently
reduced to give upper rim amino-substituted thiacalix-
arene derivatives.10 Another example of upper rim
transformation is the bromination of the 25,27-
dialkoxy-derivative of thiacalix[4]arene 2 leading to the
corresponding dibromo or tetrabromo derivatives,11

and ipso-sulfonation of 1 with concentrated sulphuric
acid to give a water-soluble tetrasulfonated derivative
in high yield.12

In this paper we report the first example of direct
nitration of the thiacalix[4]arene upper rim by reaction
with 100% HNO3 in trifluoroacetic acid. This reaction
enables the introduction of one or two nitro groups
into thiacalixarene which opens the way for subsequent
derivatisation of the upper rim.

Nitro-substituted calix[4]arenes represent typical inter-
mediates in the preparation of amino-substituted
derivatives (via reduction). As a result, nitration of the
upper rim is a well-recognised reaction in calixarene
chemistry that can be carried out either directly,13 or
via the ipso-substitution14 procedure. During our nitra-
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tion studies of thiacalixarenes we found that all the
reaction conditions routinely used in ‘classical’ calix-
arene chemistry (conc. HNO3 or 100% HNO3 in
CH2Cl2 or acetic acid, 100% HNO3 in CF3COOH,
NaNO3 in CF3COOH) led to very complicated reaction
mixtures where nitration is accompanied by concomi-
tant oxidation of the sulphur bridges.15 Consequently,
nitro-substituted thiacalixarenes are still unavailable up
to now.16 On the other hand, the aforementioned nitra-
tion agents were used in some cases as excellent oxidis-
ing agents for the synthesis of tetraalkylated sulfones or
sulfoxides.15

We realised, that to avoid nonspecific oxidation of
thiacalixarenes during nitration, we could use as start-
ing compound, derivatives having been already oxi-
dised. tert-Butylthiacalix[4]arene 1 was used as the
starting material and was tetraalkylated (Scheme 1)
using MeI/K2CO3 in boiling acetone to form 4 in 95%
yield. Subsequent oxidation with aqueous H2O2 (35%)
in trifluoroacetic acid/CHCl3 mixture gave the corre-
sponding tetrasulfone 517 in high yield (87%).

The nitration of 5 was attempted using 65% or 100%
HNO3 in glacial acetic acid. Unfortunately, reactions
carried out either at room or elevated (80°C) tempera-
tures did not lead to any products and only starting
material was recovered from the reaction mixtures. On
the other hand, the substitution of solvent for tri-
fluoroacetic acid led to the appearance of a new spot on
TLC after extended stirring of 5 with 100% HNO3 at
room temperature. We found best results were obtained
at elevated temperature (80°C) using a large excess of
nitrating agent (200 equiv.). Under these conditions,
either one or two nitro groups could be selectively
introduced into the upper rim of thiacalixarene deriva-
tives depending on the reaction time. A shorter reaction
time18 (2 days stirring at 80°C) gave mononitro deriva-
tive 6 (45% yield) while 3.5 days stirring19 led to the
diametrically substituted dinitro derivative 7 (59%)
accompanied by a small amount of proximal derivative
8 (2%). It is interesting that we were not able to isolate

any tetrasubstituted product under any conditions
(higher excess of nitrating agent, longer reaction time).
This indicates that the reactivity of the sulfone system
towards ipso nitration is much lower in comparison
with that of classical calix[4]arenes, where tetra-
substitution is the common result of the reaction car-
ried out under milder conditions (65% HNO3 in
CH2Cl2/CH3COOH at room temperature).14 The elec-
tron-withdrawing effects of the two nitro groups make
the subsequent nitration impossible and hence, under
the conditions used, the dinitro derivative is the main
product. Consequently, depending on the reaction time,
we have quite a rare possibility of regioselective (mono-,
di-) ipso-functionalisation of the thiacalixarene upper
rim.

The structures of the novel nitro compounds were
confirmed by 1H NMR analysis. Thus, compound 7
possesses two singlets in the aromatic region (� 8.33
and 9.12 ppm), two singlets due to the methoxy groups
(� 4.04 and 4.09 ppm) and one signal due to the
tert-butyl groups (� 1.37 ppm) thus showing highest
symmetry of all three nitro derivatives, which is typical
for diametrically disubstituted calixarenes. In contrast,
due to the lower symmetry, proximal derivative 8
exhibits four signals in the aromatic region (� 8.18,
8.25, 9.00, 9.06) with typical meta-coupling constants
(J=2.6 and 3.1 Hz) together with singlets at � 1.27
ppm (tert-butyl groups) and � 4.19 and 4.30 ppm
(methoxy groups).

Because of the absence of CH2 bridges, the signals
which are used for assignment in classical calix[4]arene
chemistry, the conformational analysis of thia-
calix[4]arene derivatives is not a simple task.20 The
above splitting pattern of 7 indicates three possible
explanations: (i) the molecule adopts an 1,3-alternate
conformation, (ii) it prefers a cone conformation in
CDCl3 solution, (iii) the observed signals are in fact
time-averaged signals of a dynamic system where
phenyl units are quickly moving through the macro-
cyclic ring. To distinguish among the above-mentioned
possibilities, a one-dimensional DPFGSE-NOE experi-
ment was carried out. The NOE coupling (Fig. 1)
observed between methoxy groups and the correspond-
ing aromatic signals (4.04�9.12 and 4.09�8.33 ppm)
ruled out the cone conformation, where such interac-
tions are impossible. The above findings are in accor-
dance with (i) or (iii), nevertheless, for time averaged
signals (iii) one should observe an NOE coupling
between the neighbouring methoxy groups, however,
this was not the case. Furthermore, the dynamic 1H
NMR spectrum of dinitro derivative 7 did not exhibit
any substantial changes up to −90°C (400 MHz,
CD2Cl2), which fully corresponds to the 1,3-alternate
conformation being immobilised on the NMR time
scale.

The final evidence for the conformational preferences
of 7 was demonstrated by the single-crystal X-ray dif-
fraction analysis21 (suitable monocrystals were obtained
by slow evaporation of an EtOAc solution). The
molecule adopts a 1,3-alternate conformation with two

Scheme 1. (a) MeI/ K2CO3, reflux, (95%); (b) H2O2/
CF3COOH/CHCl3, rt (87%), (c) 100% HNO3/CF3COOH,
80°C, 2 days (45%, 6). (d) 100% HNO3/CF3COOH, 80°C, 3.5
days (59%, 7).
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Figure 1. DPFGSE–NOE experiments (400 MHz, CDCl3, 298
K): (a) 1H NMR of 7; (b) singlet at � 9.12 ppm irradiated, (c)
singlet at � 8.33 ppm irradiated.

Figure 3. ORTEP drawing of 6.

chemical transformations of the upper rim of thiacalix-
arenes.
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1734; (b) Böhmer V. Angew. Chem., Int. Ed. Engl. 1995,
34, 713–745; (c) Iki, N.; Miyano, S. J. Inclusion Phenom.
Macroc. Chem. 2001, 41, 99–105.

4. (a) Iki, N.; Kumagai, H.; Morohashi, N.; Ejima, K.;
Hasegawa, M.; Miyanari, S.; Miyano, S. Tetrahedron
Lett. 1998, 39, 7559–7562; (b) Mislin, G.; Graf, E.;
Hosseini, M. W.; DeCian, A.; Fischer, J. Tetrahedron
Lett. 1999, 40, 1129–1132.

nitro and two tert-butyl groups pointing to the opposite
sides of the macrocycle (Fig. 2). The average distances
between two adjacent and two opposite sulphur atoms
are approximately 5.53 and 7.84 A� , respectively, while the
typical distances between corresponding CH2 groups in
calix[4]arene 1,3-alternate are 5.0 and 7.1 A� . This demon-
strates the bigger cavity of thiacalix[4]arenes in compari-
son to classical calix[4]arenes.

The same conformational preferences in the solid state22

were found in the case of mononitro derivative 6. This
molecule also prefers a 1,3-alternate conformation with
similar structural parameters as described for 7 (Fig. 3).

In conclusion, we have demonstrated that thia-
calix[4]arene derivatives with oxidised sulphur bridges
(-SO2-) can be directly ipso-nitrated. Depending on the
conditions, either mono- or di-nitro derivatives can be
prepared in good yields, which opens the way for further

Figure 2. ORTEP drawing of 7.



P. Lhoták et al. / Tetrahedron Letters 43 (2002) 7413–74177416

5. Mislin, G.; Graf, E.; Hosseini, M. W.; DeCian, A.;
Fischer, J. Chem. Commun. 1998, 1345–1346.

6. Katagiri, H.; Iki, N.; Hattori, T.; Kabuto, C.; Miyano,
S. J. Am. Chem. Soc. 2001, 123, 779–780.

7. Lhoták, P.; Dudic, M.; Stibor, I.; Petrickova, H.;
Sykora, J.; Hodacova, J. Chem. Commun. 2001, 731–
732.

8. Lang, J.; Vlach, J.; Dvorakova, H.; Lhoták, P.; Himl,
M.; Hrabal, R.; Stibor, I. J. Chem. Soc., Perkin Trans.
2 2001, 576–580.

9. Morohashi, N.; Iki, N.; Sugawara, A.; Miyano, S. Tet-
rahedron 2001, 57, 5557–5563.
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